Chemosensing on Miniaturized Plasmonic Substrates
نویسندگان
چکیده
منابع مشابه
Palladium on Plastic Substrates for Plasmonic Devices
Innovative chips based on palladium thin films deposited on plastic substrates have been tested in the Kretschmann surface plasmon resonance (SPR) configuration. The new chips combine the advantages of a plastic support that is interesting and commercially appealing and the physical properties of palladium, showing inverted surface plasmon resonance (ISPR). The detection of DNA chains has been ...
متن کاملCoupled nanowire-based hybrid plasmonic nanocavities on thin substrates
We theoretically analyze nanowire-based hybrid plasmonic nanocavities on thin substrates at visible wavelengths. In the presence of thin suspended substrates, the hybrid plasmonic modes, formed by the coupling between a metal nanowire and a dielectric nanowire with optical gain, exhibit negligible substrate-mediated characteristics and overlap better with the gain region. Consequently, the conf...
متن کاملSurface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates.
Au and Ag nanoshells are investigated as substrates for surface-enhanced Raman scattering (SERS). We find that SERS enhancements on nanoshell films are dramatically different from those observed on colloidal aggregates, specifically that the Raman enhancement follows the plasmon resonance of the individual nanoparticles. Comparative finite difference time domain calculations of fields at the su...
متن کاملGuiding properties of asymmetric hybrid plasmonic waveguides on dielectric substrates
We proposed an asymmetric hybrid plasmonic waveguide which is placed on a substrate for practical applications by introducing an asymmetry into a symmetric hybrid plasmonic waveguide. The guiding properties of the asymmetric hybrid plasmonic waveguide are investigated using finite element method. The results show that, with proper waveguide sizes, the proposed waveguide can eliminate the influe...
متن کاملTemplate-Stripped Tunable Plasmonic Devices on Stretchable and Rollable Substrates
We use template stripping to integrate metallic nanostructures onto flexible, stretchable, and rollable substrates. Using this approach, high-quality patterned metals that are replicated from reusable silicon templates can be directly transferred to polydimethylsiloxane (PDMS) substrates. First we produce stretchable gold nanohole arrays and show that their optical transmission spectra can be m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Micromachines
سال: 2021
ISSN: 2072-666X
DOI: 10.3390/mi12030275